Multifunctional, flexible electronic systems based on engineered nanostructured materials.

نویسندگان

  • Hyunhyub Ko
  • Rehan Kapadia
  • Kuniharu Takei
  • Toshitake Takahashi
  • Xiaobo Zhang
  • Ali Javey
چکیده

The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a local Flexible Model for Electronic Systems Acquisition Based on Systems Engineering, Case Study: Electronic high-tech Industrial

In this research we have presented a local model for implementing systems engineering activities in optimized acquisition of electronic systems in Electronic High-Tech Industrial. In this regard, after reviewing the literature and the use of documents, articles and Latin books, we have collected system acquisition life cycle models from different resources. after considering the criteria of the...

متن کامل

Inorganic semiconducting materials for flexible and stretchable electronics

Recent progress in the synthesis and deterministic assembly of advanced classes of single crystalline inorganic semiconductor nanomaterial establishes a foundation for high-performance electronics on bendable, and even elastomeric, substrates. The results allow for classes of systems with capabilities that cannot be reproduced using conventional wafer-based technologies. Specifically, electroni...

متن کامل

Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices

The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic sel...

متن کامل

Spectroscopic and Theoretical Studies of Quantum and Electronic Confinement Effects in Nanostructured Materials

Nanostructured materials have become the central subject of materials research during the last decade in the past 20th century owing to the novel electronic, optical, and catalytic properties observed in such materials. The unusual properties of these nanostructured materials can be attributed to two main microscopic effects: quantum confinement and electronic confinement. These two effects hav...

متن کامل

Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles

Engineered virus-like particles (VLP) are attractive for fabricating nanostructured materials for applications in diverse areas such as catalysis, drug delivery, biomedicine, composites, etc. Basic understanding of the interaction between the inorganic guest and biomolecular host is thus important for the controlled synthesis of inorganic nanoparticles inside VLP and rational assembly of ordere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 23 34  شماره 

صفحات  -

تاریخ انتشار 2012